Course Syllabus

1. Program of Study Bachelor of Science (Biological Sciences)
Faculty/Institute/College International College Mahidol University

2. Course Code ICBI 321

Course Title Invertebrate Zoology

3. Number of Credits 4 (4-0-8) (Lecture/Lab/Self-study)

4. Prerequisite (s) none

5. Type of Course Elective

6. Trimester/ Academic Year

2nd trimester/ every academic year

7. Course Condition

Number of students is 20-30.

8. Course Description

Morphology, anatomy, physiology and taxonomy of the invertebrates from protozoa to cellmates; phylogenetic relationships; ecology and behavior; demonstrations and practical exercises included.

9. Course Objective (s)

After completing this course, the student should be able to

- 1. Classify each invertebrate phylum to the family level.
- 2. Explain the external and internal morphology, the structure and function of various organ systems, the ecology and behavior of each invertebrate phylum.
- 3. Give examples of each class, order and family of the same phylum.
- 4. Explain phylogenetic relationships of each invertebrate phylum.
- 5. Collect, preserve, identify and record the collected data of unknown specimens.

10. Course Outline

week	Topics/Seminar	Hours			
		Lecture	Lab	Self-study	Instructor
1	Protozoa	3	2	7	Dr.
					Vacharobon
					Theerakupt
2	Porifera, Cnidaria, Ctenophora,	3	2	7	
	Platyhelminthes, Gnathostomulida,				
	Mesozoa, Nemertina, Nematoda,				
3	Nematomorpha, Acanthocephala,	3	2	7	
	Acanthocephala, Rotifera,				
	Gastrotricha, Kinorhyncha				
4	Annelida, Echiura, Sipunculida,	3	2	7	
5	Pogonophora, Priapulida, Mollusca	3	2	7	

6	MIDTERM EXAM	3	2	7		
7	Arthropoda, Pentastomulida,	3	2	7		
8	Onychophora, Tardigrada,	3	2	7		
	Phoronida,					
9	Bryozoa, Brachiopoda, Entoprocta	3	2	7		
10	Echinodermata, Chaetognatha,	3	2	7		
11	Hemichordata, Urochordata,	3	2	7		
	Cephalochordata					
FINAL EXAMINATION						
	Total	33	22	77		

11. Teaching Method (s)

- 1. Lecture
- 2. Suggested readings
- 3. Discussion in class
- 4. Laboratory with specimens

12. Teaching Media

- 1. Powerpoint Presentations
- 2. Texts and teaching materials

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

- 13.1 The ability to classify each invertebrate phylum to the family level.
- 13.2 The ability to explain the external and internal morphology, the structure and function of various organ systems, the ecology and behavior of each invertebrate phylum.
- 13.3 The ability to give examples of each class, order and family of the same phylum.
- 13.4 The ability to explain phylogenetic relationships of each invertebrate phylum.
- 13.5 The ability to collect, preserve, identify and record the collected data of unknown specimens.

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F. Minimal passing level is 60%. Student who earns 85% up will have Grade A, 80-84% Grade B+, 75-79% Grade B, 70-74% Grade C+, 65-69% Grade C, 60-64% Grade D+, 55-59% D, less than 55 Grade F. Students must attend at least 80% of the total class hours of this course.

Mid-term examination	40%
Final examination	40%
Report and Laboratory report &	10%
presentation	
Attendance & participation	10%
Total	100%

14. Course evaluation

- 14.1 Students' achievement as indicated in number 13 above.
- 14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. Reference (s)

- 1. Anderson, D.T. (editor). Invertebrate zoology. UK. Oxford University Press. 1998.
- 2. Pechenik, J.A. Biology of the invertebrates.3rd ed. USA. Wm. C. Brown Publishers. 1996.
- Kozloff, E. N. Invertebrates. USA. Sauners College Publishing, 1990.
 Miller, S.A. and Harley, J.B. Zoology. 4th Edition. USA. Mc Graw-Hill, Boston. 1999.

16. Instructor (s)

Asst. Prof. Vacharobon Theerakupt

17. Course Coordinator

Asst. Prof. Vacharobon Theerakupt