COURSE SYLLABUS

1.	Program of Study Faculty	Bachelor of Science (Chemistry) International College, Mahidol University
2.	Course Code Course Title	ICCH 422 Organic Synthesis
3.	Number of Credits	4 (4-0-8) (Lecture/Lab/Self-study)
4.	Prerequisite	ICCH 222
5.	Type of Course	Elective major course
6.	Semester / Academic Year	Third trimester 2006-2007

7. **Conditions** Number of students between 20-30

8. Course Description:

A detailed and mechanistic study of organic reactions and synthesis; the generation and synthetic uses of enolates; oxidation methods; reduction reactions via catalytic reduction and group III hydrides; halogenation.

9. Course Objectives:

- After successful completion of this course, students should be able to
- 9.1 apply organic reactions to synthesis of simple to semi-complex organic molecules;

9.2 identify the synthesis strategy of organic molecules by retrosynthesis analysis; 9.3 apply knowledge to research.

10. Course Outline

Week	Topics	Hours			Instructor
		Lecture	Lab	Self-study	
1	Active hydrogens and	2	-	4	Dr. Tienthong
	their acidities				Thongpuncha
2	Enolate formations	2	-	4	ng
3	Synthesis uses of	4	-	8	
	enolates				
4	Olefin acylation	4	-	8	
5	Aromatic acylation	4	-	8	
6	Oxidation	4	-	8	
	methodology				
7	Reduction	4	-	8	
	methodology				

8	Halogenation of olefins	4	-	8	
9	Aromatic halogenation	4	-	8	
10	Electrophilic Aromatic	4	-	8	
	syntheses				
11	Protection groups	4	-	8	
12	Protection groups	4	-	8	
	Total	44	-	88	

11. Teaching Methods:

- 11.1 Lecturing
- 11.2 Self-study
- 11.3 Group discussion and presentation

12. Teaching Media:

Transparencies, handouts and lecturing from boards.

13. Measurement and Evaluation of Student Achievement:

Student achievement is measured and evaluated by

- 13.1 the ability to apply organic reactions to synthesis of simple to semi-complex organic molecules;
- 13.2 the ability to identify the synthesis strategy of organic molecules by retrosynthesis analysis;
- 13.3 the ability to apply knowledge to research.

Student's achievement will be graded according to the College and University standard using the symbols: A, B+, B, C+, C, D+, D and F. Students must attend at least 80% of the total class hours of this course.

Assessment made from the set-forward criteria: student who gets 85% and above will have Grade A.

A minimum of;

Midterm examination	40%
Final examination	50%
Quizzes	10%

14. Course Evaluation:

- 14.1 Students' achievement as indicated in number 13 above.
- 14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. References:

Smith, M.B. and March, J. Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 6th Edition, USA: Wiley-Interscience; 2007.

Carey, F.A. and Sundberg, R.J. Advanced Organic Chemistry; Part A Structure and mechanisms, 4th Edition, USA: Plenum Publishers, 2000.

Carey, F.A. and Sundberg, R.J, Advanced Organic Chemistry; Part B Reaction and Synthesis, 4th Edition, USA: Plenum Publishers; 2000.

Lowry, T.H. and Schueller Richardson, K. **Mechanism and Theory in Organic Chemistry**, 3rd Edition, USA: Addison-Wesley; 1997.

16. Instructors:

Dr. Tienthong Thongpunchang

17. Course Coordinator:

Dr. Pakorn Bovonsombat Mahidol University International College, Mahidol University Telephone: 02-4410595 ext. 1529 E-mail: icpakorn@mahidol.ac.th