Course Syllabus

1.	Program of Study Faculty/Institute/College	Bachelor of Science (Computer Science) Mahidol University International College Mahidol University
	Course Code ICCS 413	Course Title Data Warehousing and Data Mining
2.	Number of Credits	4 (Lectures/lab) (4 - 0)
3.	Prerequisite(s)	ICCS 411
4.	Type of Course	Elective

5. Trimester / Academic Year Trimester II / Year 2005 - 2006

6. Course Description

Data Warehouse modeling and implementation: data extraction, cleansing, transformation and loading, data cube computation, materialized view selection, OLAP query processing; Data Mining: fundamentals of data mining process and system architecture, relationship of data mining with data warehouse and OLAP systems, data pre-processing, mining techniques and application: association rules, mining sequence and time-series data, text mining; implementation of selected techniques

7. Course Objective(s)

After the completion of the course, students will

- 1. Understand the concepts of data warehousing and OLAP,
- 2. Understand the data mining concepts and techniques,
- 3. Be able to efficiently design and manage data storages using data warehousing, OLAP, and data mining techniques,
- 4. Select and apply appropriate data mining techniques for different applications.

8. Course Outline

Week	Торіс	Instructor	
Week	Lecture		
1	Introduction to the course, basic statistics,	4	
	probability.		
2	Evolution of data management technologies,	4	
	introduction to data warehousing concepts.		
3	Data pre-processing, data extraction,	4	
	transformation, loading processes, data cleansing		
	algorithms.		Dr. Udom Silparcha
4	Defining subject areas, design of fact and	4	DI. Odolli Shparcha
	dimension tables, data marts.		
5	Online analytical processing (OLAP), roll-up, drill-	4	
	down, slice, and dice operations.		
6	Midterm Examination, Knowledge discovery in	4	
	databases (KDD), problems solving with data		
	mining.		

Week	Торіс	Instructor	
WEEK	Lecture		
7	Decision trees, design and applications.	4	
8	Association rules, design and applications.	4	
9	Clustering, design and applications, k-means	4	
	algorithm.		
10	Time series analysis, web mining, text data mining.	4	Dr. Udom Silparcha
11	Supervised vs unsupervised clusterings,	4	
	evolutionary computation, Genetic algorithms,		
	Course reviews		
	Total	44	

9. Teaching Method(s)

Lectures, in-class practical exercises, discussion, and self-study

10. Teaching Media

Text and teaching materials, Powerpoint, and handouts

11. Measurement and Evaluation of Student Achievement

Assessment made from stated criteria: students with 85% obtain grade A

12. Course Evaluation

1.	Written and programming		2.	Mid-term exam	40%
	assignments (×5)	20%	3.	Final exam	40%

13. **Reference**(s)

Alex Berson, Stephen J. Smith, "Data Warehousing, Data Mining, & OLAP", McGraw-Hill, 1997.

Richard J. Roiger, Michael W. Geatz, "Data Mining & Tutorial-Based Primer", Addison Wesley, 2003.

14. Instructor(s)

Dr. Udom Silparcha

15. Course Coordinator

Dr. Udom Silparcha