Course Syllabus

1. Program of Study Faculty/Institute/College		Bachelor of Science (Computer Science) Mahidol University International College			
2. Course Code	ICCS 415	Course Title Computer Graphics			
3. Number of Credits		4 (Lecture/Lab) (3-2)			
4. Prerequisite(s)		ICCS 321			
5. Type of Course		Elective			
6. Trimester / Acad	lemic Year	3 rd trimester / every academic year			

7. Course Description

Mathematical concepts for graphics, line drawing algorithms, clipping algorithms, polygon filling algorithms, physical and logical input and output devices, graphical standard for software, data structures for graphics. Space curves, surfaces in three dimensions, hidden line and hidden surface algorithms, illumination models, rendering techniques, color and ray tracing. Practical exercises are included.

8. Course Objective(s)

Upon the course completion, students will be able to

- 1. understand the basic concepts and algorithms for computer graphics,
- 2. explain and perform pipelining processes in CG,
- 3. explain and perform geometric transformations in 2D and 3D spaces, changing coordinate systems,
- 4. explain and perform projections, parallel and perspective projections,
- 5. explain and perform window-to-viewport mapping,
- 6. explain and perform hidden line and hidden surface removal algorithms, ray tracing,
- 7. explain and perform surface rendering techniques, illumination modeling,
- 8. complete projects of high standard 3D graphics and animations, and games.

Week	Торіс				Instructor
	Lecture	Hour	Lab	Hour	
1	Introduction to	3	Coding of line	2	Dr. Udom
	mathematics for		drawings and		Silparcha
	Computer Graphics,		polygons.		
	matrix, vector, primitives				
	in CG.				
2	Graphics API,	3	Simple 2D graphics	2	
	Introduction to OpenGL,		using OpenGL		
	using MS Windows with				
	OpenGL.				
3	Coordinate systems and	3	Geometric	2	
	conversion, geometric		transformations		
	transformations,				
	translation, rotation,				

9. Course Outline

	scaling, and shearing.			
4	Primitives,	3	Geometric	2
	transformations in		transformations with	
	OpenGL.		OpenGL	
5	3D-2D conversion,	3	Window-Viewport	2
	parallel and perspective		mapping	
	projections, window-			
	viewport mapping.			
6	Midterm Examination,	3	Materials in OpenGL	2
	Algorithms for hidden-			
	surface removal, z-			
	buffering, ray-tracing.			
7	Rendering and	3	Phong's model with	2
	Illumination models,		OpenGL	
	local vs global			
	illuminations, Phong's			
	model.			
8	Image and Texture	3	Image and Texture	2
	mapping.		mapping in OpenGL	
9	Display list and	3	Display list and	2
	Buffering.		OpenGL Buffering	
10	Physics Modeling with	3	Collision handling,	2
	OpenGL: collisions,		dynamic simulation	
	dynamic simulation.			
11	Behavior and AI	3	AI and CG	2
	Total	33		22

10. Teaching Method(s)

- 1. Lectures
- 2. Lab exercises
- 3. Tests / Assignments
- 4. Projects

11. Teaching Media

- 1. Textbooks
- 2. Lecture notes
- 3. Powerpoint presentations
- 4. Videos
- 5. Demonstrations

12. Measurement and evaluation of student achievement

Marks	Grade
81 or more	A
76 - 80	B+
71 – 75	В
66 – 70	C+
61 – 65	С
56 - 60	D+
51 - 55	D

13. Course evaluation

Components	%
Tests & Assignments	10
Projects	25
Midterm Exam	25
Final Exam	40
Total	100

14. Reference(s)

- 1. Hearn, D., Baker P., "Computer Graphics with OpenGL", Prenticel Hall, 2003
- 2. Hill, F.S, "Computer Graphics Using OpenGL", Prenticel Hall, 2000
- 3. K. Hawkins, D. Astle, "OpenGL Game Programming", Premier Press, 2004
- 4. A.Watt, F. Policarpo, "*3D Game: Volume 1: Real-time Rendering and Software Technology*", Addison-Wesley, 2001.

15. Instructor(s)

Dr. Udom Silparcha

16. Course coordinator

Dr. Udom Silparcha