Course Syllabus

1.	Program of Study Faculty/Institute/College	Bachelor of Science (Computer Science) Mahidol University International College Mahidol University
	Course Code ICCS 439	Course Title Evolutionary Computation
2.	Number of Credits	4 (Lectures/lab) (4 - 0)
3.	Prerequisite(s)	ICCS 321
4.	Type of Course	Elective

5. Trimester / Academic Year Trimester III / Year 2005 - 2006

6. **Course Description**

Computational systems inspired by natural evolution; natural and artificial evolution, evolutionary; chromosome representations; search operators; co-evolution; constraint handling techniques; niching and speciation; genetic programming; classifier systems and theoretical foundations; implementation of selected algorithms

7. Course Objective(s)

By the end of the course students should be able to:

- Gain understanding of various evolutionary computation techniques
- Identify algorithms suitable for solving certain evolutionary-computation problems
- Apply evolutionary computation techniques to optimization, learning, and design
- Implement at least one algorithm from each of the following groups: generic algorithms, representations, selections, and search operators
- Compare and contrast algorithms in each group mentioned above

8. Course Outline

Woolz	Торіс		Instructor
WEEK	Lecture	Hour	Instructor
1	Introduction, Possible Applications, Pros and Cons	4	
2	Principles of Evolutionary Processes and Genetics	4	
3	A History of Evolutionary Computation, Introduction	4	
	to Evolutionary Algorithms	-	
4	Genetic Algorithms, Evolutional Strategies,	4	
	Evolutionary Programming	-	Dr Krittava
5	Derivative Methods in Genetic Programming, Learning	4	Leelawong
	Classifier Systems, Hybrid Methods	-	Leciawong
6	Introduction to Representations, Binary Strings, Real-	4	
	Valued Vectors	т	
7	Permutations, Finite-State Representations, Parse Trees	4	
8	Introduction to Selection, Proportional Selection and	4	
	Sampling Algorithms	+	

Week	Торіс		Instructor
	Lecture	Hour	Instructor
9	Tournament Selection, Rank-based Selection,	4	
	Boltzmann Selection		Dr. Krittovo
10	Generation Gap Methods, A comparison of Selection	4	
	Mechanisms	4	DI. Kilitaya
11	Introduction to Search Operators, Mutation Operators,	4	Leelawong
	Recombination	4	
	Total	44	

9. Teaching Method(s)

Lectures, in-class practical exercises, discussion, and self-study

10. Teaching Media

Text and teaching materials, Powerpoint, Mathematica, and handouts

11. Measurement and Evaluation of Student Achievement Assessment made from stated criteria: students with 90%+ obtain grade A

12. Course Evaluation

1. Participation5%4. Mid-term exam25%2. Written assignments (×5)15%5. Final exam35%3. Programming assignments20%35%

13. **Reference**(s)

Bäck, T, 2000. Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing, Bristol.

Fogel, D.B., 1999. Evolutionary Computation : Toward a New Philosophy of Machine Intelligence-2nd ed. Wiley-IEEE Press.

Jacob, C., 2001. Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann.

14. Instructor(s)

Dr. Krittaya Leelawong

15. Course Coordinator

Dr. Krittaya Leelawong