Course Syllabus

1. Program of Study Faculty/Institute/College		Bachelor of Science (Computer Science) Mahidol University International College		
2. Course Code	ICCS 477	Course Title System Simulation		
3. Number of Credits		4 (Lecture/Lab) (4-0)		
4. Prerequisite(s)		ICSC 303, ICCS 365		
5. Type of Course		Elective		
6. Trimester / Acad	emic Year	2 nd trimester / every academic year		

7. Course Description

Mathematical modeling of systems. Stochastic processes. Study of analytical and discrete-event simulation models. Verification and validation procedures. Programming techniques. Special purpose simulation languages. Simulation experiments.

8. Course Objective(s)

After the completion of the course, students will

- 1. understand the concepts of simulation, ie., physical, mathematical, and computerized modelings,
- 2. be able to plan, analyze, conceptualize, and design simulation models of real world systems,
- 3. be able to appropriately collect data and implement models using programming languages and tools,
- 4. be able to verify and validate models against the real systems,
- 5. be able to analyze the simulation outputs, comparing two or more alternative solutions.

Week	Торіс			Instructor	
	Lecture	Hour	Lab	Hour	
1	Introduction to the	4	-	-	Dr. Udom
	course, nature of				Silparcha
	simulation				-
2	Types of simulations,	4	-	-	
	simple simulation				
	practices, tools for				
	simulation, programming				
	and simulation languages				
3	Fundamental simulation	4	-	-	
	concepts, discrete-event				
	simulation model				-
4	Designing models,	4	-	-	
	conceptual models, data				
	collection and analysis				
5	Probability distributions,	4	-	-	
	random variates, random]

9. Course Outline

	number generators, Monte Carlo simulation			
6	Midterm Examination Models, Animation.	4	-	-
7	Systems dynamics modeling using Arena	4	-	-
8	Model building	4	-	-
9	Model verification and validation	4	-	-
10	Output analysis, Comparing alternative system configurations	4	-	-
11	Experimental simulation design and optimization	4	-	-
	Total	44		0

10. Teaching Method(s)

- 1. Lectures
- 2. Tests / Assignments
- 3. Project

11. Teaching Media

- 1. Textbooks
- 2. Lecture notes
- 3. Powerpoint presentations
- 4. Demonstrations

12. Measurement and evaluation of student achievement

Marks	Grade
81 or more	А
76 - 80	B+
71 – 75	В
66 - 70	C+
61 - 65	С
56 - 60	D+
51 - 55	D
50 or less	F

13. Course evaluation

Components	%
Tests & Assignments	15
Project	15
Midterm Exam	30
Final Exam	40
Total	100

14. Reference(s)

1. Charles Harrell; Biman K. Gosh; Royce O. Bowden, Jr., "Simulation Using Promodel", McGraw-Hill, 2004.

- 2. Averill Law, W. David Kelton, "Simulation Modeling and Analysis", 3rd Ed., McGraw-Hill, 2000.
- W. David Kelton, Randall P. Sadowski, Deborah A. Sadowski, "Simulation with Arena", 2nd. Ed., McGraw-Hill, 2002.
 James R. Evans, David L. Olson, "Introduction to Simulation and Risk Analysis", 2nd Ed., Prentice Hall, 2002.

15. Instructor(s)

Dr. Udom Silparcha

16. Course coordinator

Dr. Udom Silparcha