Course Syllabus

1.	Program of Study College	Bachelor of Science (Applied Mathematics) Mahidol University International College
2.	Course Code Course Title	ICMA 212 General Mathematics II
3.	Number of Credits	4(4-0-8) (Lecture-Lab-Self study)
4.	Prerequisites	ICMA 211 or equivalent
5.	Type of Course	Core science course.
6.	Session / Academic Year	Trimester 2/ every academic year
7.	Course Conditions	Maximum number of students is 30 per class.

8. Course Description

Three-dimensional space; rectangular, spherical and cylindrical coordinates; functions of several variables; partial derivates; multiple integrals; vector calculus; line and surface ingrals of vector functions; Green's theorem; the divergence theorem; Stoke's theorem.

9. Course Objectives

After successful completion of this course, students will be able to

- 9.1 understand the three-dimensional space, rectangular, spherical and cylindrical coordinates.
- 9.2 understand the functions of several variables; partial derivates; multiple integrals
- 9.3 understand the vector calculus; line and surface ingrals of vector functions
- 9.4 understand Green's theorem; the divergence theorem; Stoke's theorem

	Hours					
Week	Topics	Lecture	Lab	Self	Instructor	
				study		
1-2	Three-dimensional space;	8	-	16	TBA	
	rectangular, spherical and cylindrical					
	coordinates					
3-4	Vector calculus; line and surface	8	-	16		
	integrals of vector functions					
5-7	Functions of several variables,	8	-	16		
	partial derivatives					
8-9	Multiple integrals	8	-	16		
10	Green theorem	4	-	8		
11	The divergence theorem; Stoke's	4	-	8		
	theorem					
Final Examination						
	Total	44	-	88		

10. Course Outline

11. Teaching Method

Lectures

12. Teaching Media

Texts and handouts

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

- 13.1 The ability to explain the three-dimensional space, rectangular, spherical and cylindrical coordinates.
- 13.2 The ability to explain the functions of several variables; partial derivates; multiple integrals.
- 13.3 The ability to explain the vector calculus; line and surface ingrals of vector functions.
- 13.4 The ability to describe Green's theorem; the divergence theorem; Stoke's theorem

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Ratio of mark

Homework and quizzes	15%
Test 1	25%
Test 2	25%
Final exam	35%

14. Course evaluation

- 14.1 Students' achievement as indicated in number 13 above.
- 14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. References

- 15.1 Anton, Howard. Calculus. Wiley and sons, Inc.
- 15.1 Anton H. Calculus: Wiley and sons, Inc.
- 15.2 Stewart, James.Calculus. Brooks/Cole.
- 15.2 Stewart J. Calculus: Brooks/Cole.
- 15.3 Thomas, George B and Finney, Ross. Calculus and Analytic Geometry. Addison-Wesley.
- 15.3 Thomas GB, Finney R. Calculus and Analytic Geometry: Addison-Wesley.

16. Instructors

Assoc. Prof. Dr. Chinda Achariyakul

17. Course Coordinator