Course Syllabus

1.	Program of Study College	Bachelor of Science (Applied Mathematics) Mahidol University International College
2.	Course Code Course Title	ICMA 214 Ordinary Differential Equations
3.	Number of Credits	4(4-0-8) (Lecture-Lab-Self study)
4.	Prerequisites	ICMA 212 or consent of instructor
5.	Type of Course	Required Major Course
6.	Session / Academic Year	Trimester 3 every year.
7.	Course Conditions	Maximum number of students is 30 per class.

8. Course Description

Introduction to ordinary differential equations, linear first order equations, nonlinear first order equations, applications of first order equations, second order linear equations, applications of second order linear equation, higher order linear equations.

9. Course Objectives

After successful completion of this course, students will able to:

- 9.1 understand fundamental concepts of ordinary differential equations.
- 9.2 solve ordinary differential equations of first, second and higher order,
- 9.3 apply ordinary differential equations to their field of interest.

		Hours			
Week	Topics	Lecture	Lab	Self	Instructor
				study	
1	Basic definitions and terminology,	4	-	8	
	preliminary theory				
2	First order differential equations:	4	-	8	
	Separable differential equations,				
	homogeneous equations				
3-4	First order differential equations:	8	-	16	
	Exact and non exact equations				
5	Linear equations	4	-	8	
	Applications of first order equations				
6	Test 1	4	-	8	
	Introduction to second order				
	equations				
7-8	Linear homogeneous equations of	5	-	10	
	second order				
	Method of reduction of order				
	Homogeneous equations with				
	constant coefficients				
8	Linear non-homogeneous equations	3	-	6	

10. Course Outline

	of second order:					
	The method of undetermined					
	coefficients					
9-10	Test 2	6	-	12		
	The method of variation of					
	parameters					
10-11	Applications of second order	6	-	12		
	equations					
	Higher order equations					
	Review					
Final Examination						
	Total	44		88		

11. Teaching Methods

Lecturing and problem solving

12. Teaching Media

Texts and handouts

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

- 13.1 The ability to fundamental concepts of ordinary differential equations.
- 13.2 The ability to solve ordinary differential equations of first, second and higher order,

13.3 The ability to apply ordinary differential equations to their field of interest. Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Ration of mark	
Homework and quizzes	15%
Test 1	25%
Test 2	25%
Final exam	35%

14. Course evaluation

- 14.1 Students' achievement as indicated in number 13 above.
- 14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. References

- 15.1 Zill DG. A first course in differential equations with applications: WS Publishers.
- 15.2 Boyce, DiPrima. Elementary differential equations: John Willey & Sons, Inc.

16. Instructors

Assoc. Prof. Dr. Chinda Achariyakul

17. Course Coordinator

Assoc. Prof. Dr. Chinda Achariyakul