Course Syllabus

1. Program of Study College
2. Course Code

Course Title
3. Number of Credits
4. Prerequisite
5. Type of Course
6. Session / Academic Year
7. Course Conditions

Bachelor of Science (Applied Mathematics)
International College, Mahidol University
ICMA 324
Real Analysis
4(4-0-8) (Lecture-Lab-Self study)
ICMA 322
Elective course
$2^{\text {nd }}$ or $3^{\text {rd }}$ Trimester/ every academic year
Maximum number of students is 30 per class.
8. Course Description

Measurable functions, measures, the integrable functions, the Lebesgue space, modes of convergence.
9. Course Objectives

The course is designed to introduce students to the concept of real analysis and is a sequel to the course in advanced calculus.
After successful completion of this course, students will be equipped with sufficient tools to do advanced mathematics especially in the field of mathematical analysis.
10. Course Outline

Week	Topics		Hours		
		Lectures	Lab	Self study	ructo
1	Measurable sets, measurable space, outer measure	4	-	8	
2	Borel sets, simple and step functions	4	-	8	
3	Measurable functions, Borel- measurable	4	-	8	
4	Lebesgue measure, signed measures	4	-	8	
5	Radon-Nikodym Theorem, Fubini’s Theorem	4	-	8	
6	Midterm Exam	2	-	4	
$6-7$	Space of Lebesgue-integrable functions	4	-	8	
$7-8$	Bounded variation, convergence theorems	4	-	8	
$8-9$	Riemann integrals as Lebesgue integrals	4	-	8	
$9-10$	Normed spaces and Banach	4	-	8	

	spaces				
10-11	Linear functionals, L^{p} spaces	4	-	8	
11	Review for final	2	-	4	
Final Exam					
	Total	44	-	88	

11. Teaching Methods

Lecturing and problem solving.

12. Teaching Media

Transparencies, handouts and lecturing from boards.
13. Measurement and Evaluation of Student's Achievement

Student achievement is measured and evaluated by
13.1 The ability to explain the concept of real analysis and is a sequel to the course in advanced calculus.
13.2 The ability to do advanced mathematics especially in the field of mathematical analysis.
Student's achievement will be graded according to the college and university standard using the symbols: $\mathrm{A}, \mathrm{B}+, \mathrm{B}, \mathrm{C}+, \mathrm{C}, \mathrm{D}+, \mathrm{D}$ and F .

Ratio of mark
Assignments and quizzes (if any) 20\%
Midterm examination 40\%
Final examination 40\%
14. Course evaluation
14.1 Students' achievement as indicated in number 13 above.
14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. References

15.1 Royden H. Real analysis: Macmillan Publishing Company; 1988.
15.2 Rudin W. Principles of mathematical analysis: McGraw-Hill; 1976.

16. Instructor

Assoc. Prof. Dr. Chinda Achariyakul

17. Course Coordinator

Assoc. Prof. Dr. Chinda Achariyakul

