Course Syllabus

1.	Program of Study College	Bachelor of Science (Applied Mathematics) Mahidol University International College
2.	Course Code Course Title	ICMA 331 Special Functions
3.	Number of Credits	4(4-0-8) (Lecture-Lab-Self study)
4.	Prerequisite	ICMA 214
5.	Type of Course	Elective Course
6.	Session / Academic year	1 st or 2 nd Trimester/every academic year
7.	Course Conditions	Number of students is 20-30.

8. Course Description

Orthogonal polynomials, gamma functions, beta functions, hypergeometric functions, Legendre functions, spherical harmonics in p dimensions, Bessel functions.

9. Course Objectives

After successful completion of this course, students will be able to

- 9.1 understand number of functions;
- 9.2 apply such functions in related area.

10. Course Outline

		Hours					
Week	Topics	Lecture	Lab	Self	Instructor		
				study			
1-2	Orthogonal polynomials	8	-	16			
3	Gamma and beta functions	4	-	8			
4-5	Hypergeometric functions,	6	-	16			
5	Midterm Exam	2	-	4			
6-7	Legendre functions	8	-	16			
8-9	Spherical harmonics in p dimensions	8	-	16			
10-11	Bessel functions	6	-	16			
11	Review	2	-	4			
Final Examination							
	Total	44	-	88			

11. Teaching Methods

Lecturing and problem solving.

12. Teaching Media

Text and handouts.

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

13.1 The ability to explain the number of functions;

13.2 The ability to apply such functions in related area.

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Ratio of mark	
Homework	20%
Midterm examination	40%
Final examination	40%

14. Course evaluation

- 14.1 Students' achievement as indicated in number 13 above.
- 14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. References

- 15.1 Hochstadt H. The functions of mathematical physics. New York: John Wiley and Sons, Inc.; 1971.
- 15.2 Andrews GE, Askew R, Rog R. Special functions: Cambridge University Press; 1999.

16. Instructors

Dr. Aram Tangboondouangjit

17. Course Coordinator

Assoc. Prof. Dr. Chinda Achariyakul