Course Syllabus

1.	Program of Study College	Bachelor of Science (Applied Mathematics) International College, Mahidol University		
2.	Course Code Course Title	ICMA 333 Boundary Value Problems		
3.	Number of Credits	4(4-0-8) (Lecture-Lab-Self study)		
4.	Prerequisite	ICMA 323		
5.	Type of Course	Elective major course		
6.	Session / Academic Year	1 st or 3 rd Trimester/academic year.		
7.	Course Conditions	Maximum number of students is 30 per class.		

8. Course Description

Sturm-Liouville eigenvalue problems, nonhomogeneous problems, Green's function and generalized Green's function.

9. Course Objectives

The course is designed to be a sequel to the course in partial differential equations. It explores a deeper aspect of such a field and provides students with a lot more tools to solve various types of partial differential equations. After successful completion of this course, students should be able to understand more clearly the nature of the boundary value problems and how to solve them.

10. Course Outline

		Hours					
Week	Topics	Lectures	Lab	Self study	Instructor		
1-2	Sturm-Liouville eigenvalue	8	-	16			
	problems, Rayleigh Quotient						
3-4	Nonhomogeneous problems,	8	-	16			
	forced vibrating membranes and						
	resonance, Poisson's equation						
5-6	Green's functions for time-	8	-	16			
	independent problems						
7	Midterm Exam	2	-	4			
7-9	Infinite domain problems-Fourier	8	-	16			
	transform solutions of partial						
	differential equations						
9-11	Green's functions for time-	8	-	16			
	dependent problems						
11	Review for final exam	2	-	4			
Final Examination							
	44	-	88				

11. Teaching Methods

Lecturing and problem solving.

12. Teaching Media

Transparencies, handouts and lecturing from boards.

13. Measurement and Evaluation of Student's Achievement

Student achievement is measured and evaluated by

- 13.1 The ability to use a lot more tools in Mathematics to solve various types of artial differential equations.
- 13.2 The ability to explain clearly the nature of the boundary value problems and now how to solve them.

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Ratio of mark20%Assignments and quizzes (if any)20%Midterm examination40%Final examination40%

14. Course evaluation

14.1 Students' achievement as indicated in number 13 above.

14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. Reference

15.1 Haberman R. Elementary applied partial differential equations: with Fourier series and boundary value problems: Prentice-Hall, Inc.; 1998.

16. Instructor

Dr. Aram Tangboondouangjit

17. Course Coordinator

Assoc. Prof. Dr. Chinda Achariyakul