Course Syllabus

1.	Program of Study College	Bachelor of Science (Applied Mathematics) Mahidol University International College		
2.	Course Code Course Title	ICMA 423 Set Theory		
3.	Number of Credits	4(4-0-8) (Lecture-Lab-Self study)		
4.	Prerequisite	None		
5.	Type of Course	Elective course		
6.	Session / Academic year	1 st , 2 nd or 3 rd Trimester/every academic year		
7.	Course Conditions	Maximum number of students is 30 per class.		

8. Course Description

Historical introduction, classes and sets, functions, relations, partially orders classes, axiom of choice and related principle, natural numbers, finite and infinite sets, arithmetic of cardinal numbers, arithmetic of ordinal numbers.

9. Course Objectives

After successful completion of this course, students will be able to :

- 9.1 develop basic ideas and get better understanding about the set theory;
- 9.2 practically apply the set theory to proof and solve problems of more advances topics in the area.

		Hours						
		Lecture	Lab	Self				
Week	Topics			study	Instructor			
1	Historical introduction, Building	4	-	8				
	sentences							
2	Classes and sets	4	-	8				
3	Relations	2	-	4				
3-4	Functions	4	-	8				
4-5	Partially ordered classes	4	-	12				
5	Midterm Exam	2	-	4				
6	Lattice and Well-ordered classes	4	-	8				
7	Axiom of choice and related	4	-	8				
	principles							
8	The natural numbers	4	-	8				
9	Finite and infinite sets	4	-	8				
10	Arithmetic of cardinal numbers	4	-	8				
11	Arithmetic of ordinal numbers	4	-	8				
Final Examination								
Total 44 - 88								

10. Course Outline

11. Teaching Methods

Lecturing and problem solving.

12. Teaching Media

Text and handouts.

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

- 13.1 The ability to explain the concept of the set theory;
- 13.2 The ability to develop basic ideas of the set theory
- 13.3 The ability to practically apply the set theory to proof and solve problems of more advances topics in the area

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Ratio of markHomework20%Midterm examination40%Final examination40%

14. Course evaluation

- 14.1 Students' achievement as indicated in number 13 above.
- 14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. Reference

15.1 Pinter CC. Set Theory: Addison-Wesley Publishing Company, Inc; 1971.

16. Instructors

Assistant Professor Pannee Putthapiban

17. Course Coordinator

Assoc. Prof. Dr. Chinda Achariyakul