Course Syllabus

1.	Program of Study College	Bachelor of Science (Applied Mathematics) International College, Mahidol University
2.	Course Code Course Title	ICMA 425 Introduction to Topology
3.	Number of Credits	4(4-0-8) (Lecture-Lab-Self study)
4.	Prerequisite	None
5.	Type of Course	Elective major course
6.	Session / Academic Year	2 nd or 3 rd Trimester/every academic year.
7.	Course Conditions	Maximum number of students is 30 per class.

8. Course Description

Topological spaces, closed sets, open sets, homeomorphisms, continuous functions, metric topology, connected spaces, compact spaces, countability axioms, separation axioms, normal spaces, Urysohn lemma, Urysohn metrization theorem.

9. Course Objectives

The course is designed to introduce students to another important foundation of advanced mathematics. After successful completion of this course, students will have a better picture of what mathematics is about. The subject will serve as a background for future study in analysis, geometry, and algebraic topology.

		Hours			
Week	Topics	Lecture	Lab	Self study	Instructor
1	Topological spaces, basis for a topology	4	-	8	
2	The order topology, the product topology on $X \times Y$, the subspace topology	2	-	4	
2-3	Closed sets and limit points, Hausdorff spaces	4	-	8	
3-4	Continuous functions, homeomorphisms	4	-	8	
4-5	Product topology, metric topology	4	-	8	
5-6	Review, Midterm Exam	4	-	8	
6-7	Connected spaces, connected subspaces of	4	-	8	

10. Course Outline

	the real line						
7-8	Compact spaces, compact subspaces of the real line	4	-	8			
8-9	Limit point compactness, local compactness	4	-	8			
9-10	Countability axioms, separation axioms	4	-	8			
10-11	Normal spaces, Urysohn lemma, Urysohn metrization theorem	4	-	8			
11	Review for final	2	-	4			
Final ExamINATION							
	Total	44		88			

11. Teaching Methods

Lecturing and problem solving.

12. Teaching Media

Transparencies, handouts and lecturing from boards.

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

- 13.1 The ability to explain the important foundation of advanced Mathematics.
- 13.2 The ability to use the knowledge obtained as a background for future study in analysis, geometry, and algebraic topology.

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Kallo of mark	
Assignments and quizzes (if any)	20%
Midterm examination	40%
Final examination	40%

14. Course evaluation

14.1 Students' achievement as indicated in number 13 above.

14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. Reference

15.1 Munkres J. Topology: Prentice Hall; 1999.

16. Instructor

Assistant Professor Pannee Putthapiban

17. Course Coordinator

Assoc. Prof. Dr. Chinda Achariyakul