Course Syllabus

1.	Program of Study College	B.Sc. (Applied Mathematics) Mahidol University International College
2.	Course Code Course Title	ICMA 441 Viscous Fluid
3.	Number of Credits	4(4-0-8) (Lecture-Lab-Self study)
4.	Prerequisite	ICMA 214
5.	Type of Course	Elective Courses
6.	Session / Academic year	1 st or 3 rd Trimester/Every Academic Year
7.	Course Conditions	Maximum number of students is 30 per class.

8. Course Description

Couette and Poiseuille Flow, Navier-Stokes Equation, Small Reynolds number flows, Flow in Convergent and Divergent Chanels, Boundary Layer Analysis, Flow Along a Fat Plate; Displacement Thickness; Curves Walls and Separation; Instability of Vortex Motion

9. Course Objective

After successful completion of this course, students will be able to 9.1 understand the concept and solve the viscous fluid problems

10. Course Outline

	Topics	Hours			
Week		Lecture	Lab	Self study	Instructor
1	Couette and Poiseuill Flow	4	-	8	
2	Navier-Stokes Equation	4	-	8	
3	Small Reynolds Numbers	4	-	8	
4-5	Exam I	8	-	16	
	Flow in Convergent and Divergent				
	Channels				
6	Flow Towards a Plane Plate	4	-	8	
7	Boundary Layer Analysis	4	-	8	
8	Flow Along a Flat Plate	4	-	8	
	Exam II				
9	Displacement Thickness	4	-	8	
10	Curves Walls and Separation	4	-	8	
11	Instability of Vortex Motion	4	-	8	

Final Examination						
	Total	44	-	88		

11. Teaching Methods

Lecture

12. Teaching Media

Texts and handouts.

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

- 13.1 The ability to explain the Mathematic concept of the viscous fluid.
- 13.2 The ability to apply the knowledge obtained to solve the viscous fluid problems.

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Ratio of mark	
Homework and Quizzes	10%
Exam I	25%
Exam II	25%
Final examination	40%

14. Course evaluation

- 14.1 Students' achievement as indicated in number 13 above.
- 14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. Reference

15.1 Mises Rv, Friedrichs KO. Fluid dynamics New York : Springer-Verlag; 1971.

16. Instructors

Dr. Aram Tangboondouangjit

17. Course Coordinator

Assoc. Prof. Dr. Chinda Achariyakul