COURSE SYLLABUS

1.	Program of Study: Faculty/Institute/College:	Bachelor of Science (Physics) International College, Mahidol University
2.	Course Code: Course Title:	ICPY 323 Electrodynamics
3.	Number of Credits:	4 (4-0-8) (Lecture/lab/Self-study)
4.	Prerequisites:	None
5.	Type of Course:	Required Major Course
6.	Session / Academic Year:	3 rd Trimester/every academic year.
7.	Course Conditions:	None

8. Course Description :

Maxwell's equation, wave equations, radiation fields, special theory of relativity.

9. Course Objectives:

The course is designed to introduce the concepts of non-classical wave equations and special theory of relativity.

Week	Topics	Hours			Instructor
		Lecture	Lab	Self	
				study	
1	The Faraday induction law. Inductance	4	-	8	Dr. Santi Watanayon
	stored in a magnetic field. Magnetic force between two circuits				
2	Maxwell's equations	4	-	8	Dr. Santi Watanayon
3	Wave equations for V, <u>A</u>	4	-	8	Dr. Santi Watanayon
4	Green's function. Retarded and advanced potentials. Wave equations for \underline{E} , \underline{B}	4	-	8	Dr. Santi Watanayon
5	Propagation of electromagnetic waves in conducting media	4	-	8	Dr. Santi Watanayon
6	Midterm Examination	4	-	8	Dr. Santi Watanayon
7	Propagation of electromagnetic waves in nonconductors	4	-	8	Dr. Santi Watanayon

10. Course Outline

8	Propagation of electromagnetic waves in good conductors	4	-	8	Dr. Santi Watanayon	
9	Guided waves	4	-	8	Dr. Santi Watanayon	
10	Cavity resonators	4	-	8	Dr. Santi Watanayon	
11	Radiation from an oscillating dipole and a group of moving charges	4	-	8	Dr. Santi Watanayon	
Final Examination						
Total 48 - 80						

11. Teaching Method (s)

- 11.1 Lecture
- 11.2 Suggested readings
- 11.3 Discussion in class

12. Teaching Media

- 12.1 PowerPoint Presentations
- 12.2 Texts and teaching materials

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

13.1 the ability to describe the concepts of non-classical wave equations and special theory of relativity.

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Students must attend at least 80% of the total class hours of this course.

Ratio of mark	
Mid-term examination	40%
Final examination	40%
Attendance and assignment	20%
Total	100%

14. Course Evaluation

14.1 Evaluate as indicated in number 13 above.

14.2 Evaluate student's satisfaction towards teaching and learning of the course using a questionnaire.

15. References:

Jackson JD. Classical electrodynamics. 3rd Ed. U.S.A.: Willey and Company; 1998.

16. Instructors:

Assistant Professor Dr. Santi Watanayon

17. Course Coordinator:

Assistant Professor Dr. Santi Watanayon