COURSE SYLLABUS

1.	Program of Study: Faculty/Institute/College:	Bachelor of Science (Physics) International College, Mahidol University
2.	Course Code: Course Title:	ICPY 324 Optics I
3.	Number of Credits:	4 (4-0-8) (Lecture/lab/Self-study)
4.	Prerequisites:	None
5.	Type of Course:	Required Course
6.	Session / Academic Year:	1 st Trimester/every academic year
7.	Course Conditions :	None

8. Course Description:

Reflection and refraction, lenses, pencil optics, physical optics.

9. Course Objectives:

After successful completion of this course, students will be able to

9.1 Know the differences between reflection and refraction.

9.2 Know the various types and properties of lenses.

9.3 Know the characteristics and properties of the pencil optics and physical optics.

Week	Topics	H	lours	Instructor	
		Lecture	Lab	Self	
				study	
1	Properties of electromagnetic waves	4	0	8	Dr. Narin Nuttavut
2-3	Propagation of light in isotropic media, Fresnel's formulas	8	0	16	Dr. Narin Nuttavut
4	Two-beam interference by amplitude division and by wave front splitting	4	0	8	Dr. Narin Nuttavut
5	Multiple beam interference, interference in thin films	4	0	8	Dr. Narin Nuttavut
6	Midterm Examination	4	0	8	Dr. Narin Nuttavut
7	Fraunhofer diffraction	4	0	8	Dr. Narin Nuttavut
8	Fresnel diffraction	4	0	8	Dr. Narin Nuttavut
9 – 10	Propagation of light in anisotropic media,	8	0	16	Dr. Narin Nuttavut

10. Course Outline

	polarization in birefringence							
10	Basic concepts of Fourier optics	4	0	8	Dr. Narin			
					Nuttavut			
11	Introduction to laser and holography	4	0	8	Dr. Narin			
					Nuttavut			
Final Examination								
Total 40								

11. Teaching Method (s)

- 11.1 Lecture
- 11.2 Suggested readings
- 11.3 Discussion in class

12. Teaching Media

- 12.1 Powerpoint Presentations
- 12.2 Texts and teaching materials

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by the ability to

- 13.1 the ability to describe the differences between reflection and refraction.
- 13.2 the ability to describe the various types and properties of lenses.
- 13.3 the ability to describe the characteristics and properties of the pencil optics and physical optics.

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

40%
40%
20%
100%

14. Course Evaluation

14.1 Evaluate as indicated in number 13 above.

14.2 Evaluate student's satisfaction towards teaching and learning of the course using a questionnaire.

15. References:

Guenther RD. Modern optics. U.S.A.: John Wiley & Sons; 1990. Milonni PW, Eberly JH. Lasers. U.S.A.: John Wiley & Sons; 1991.

16. Instructors:

Dr. Narin Nuttavut

17.Course Coordinator:

Assistant Professor Dr. Santi Watanayon