COURSE SYLLABUS

1. Program of Study: Faculty/Institute/Colle	Bachelor of Science (Physics) ege: International College, Mahidol University
2. Course Code: Course Title:	ICPY 331 Mathematical Methods in Physics I
3. Number of Credits:	4 (4-0-8) (Lecture/lab/Self-study)
4. Prerequisites:	None
5. Type of Course:	Required Major Course
6. Session / Academic Yo	ear: 2 nd Trimester/every academic year
7. Course Conditions:	None

8. Course Description:

Special functions, Legendre functions, Hermite polynomials, Laguerre polynomials, Bessel functions.

9. Course Objectives:

After successful completion of this course, students will be able to9.1 develop key concepts in Special functions, Legendre functions, Hermite polynomials, Laguerre polynomials, Bessel functions.

Week	Topics	H	Hours		Instructor	
		Lecture	Lab	Self		
				study		
1-2	Special functions	8	-	8	Dr. Narin Nuttavut	
3-4	Legendre functions	8	-	8	Dr. Narin Nuttavut	
5-6	Hermite polynomials	8	-	8	Dr. Narin Nuttavut	
7	Midterm Examination	4	-	-	Dr. Narin Nuttavut	
8-9	Laguerre polynomials	8	-	8	Dr. Narin Nuttavut	
10-11	Bessel functions	8	-	8	Dr. Narin Nuttavut	
Final Examination						
	Total	48	-	80		

10. Course Outline

11. Teaching Method (s)

- 11.1 Lecture
- 11.2 Suggested readings
- 11.3 Discussion in class

12. Teaching Media

- 12.1 PowerPoint Presentations
- 12.2 Texts and teaching materials

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

13.1 the ability to describe the key concepts in the special functions,

Legendre functions, Hermite polynomials, Laguerre

polynomials, Bessel functions. Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Ratio of mark	
Mid-term examination	40%
Final examination	40%
Attendance and assignment	20%
Total	100%

14. Course Evaluation

14.1 Evaluate as indicated in number 13 above.14.2 Evaluate student's satisfaction towards teaching and learning of the

course using a questionnaire.

15. References:

Arfken GB, Weber HJ. Mathematical methods for physicist. U.S.A: Academic Press; 2005.

16 Instructors:

Dr. Narin Nuttavut

17. Course Coordinator:

Assistant Professor Dr. Santi Watanayon