COURSE SYLLABUS

1.	Program of Study: Faculty/Institute/College:	Bachelor of Science (Physics) International College, Mahidol University
2.	Course Code: Course Title:	ICPY 333 Mathematical Methods in Physics III
3.	Number of Credits:	4 (4-0-8) (Lecture/lab/Self-study)
4.	Prerequisites:	None
5.	Type of Course:	Elective Major course
6.	Session / Academic Year:	1 st , 2 nd or 3 rd Trimester/every academic year
7.	Course Conditions:	None

8. Course Description:

Numerical analysis; Error analysis, solution of nonlinear equation, interpolation and polynomial approximation, curve fitting, systems of linear equations, fast Fourier transform, numerical solution of differential equations, applications in research.

9. Course Objectives:

After successful completion of this course, students will able to

9.1 develop key concepts on the topics of numerical analysis; Error analysis, solution of nonlinear equation, interpolation and polynomial approximation, curve fitting, systems of linear equations, fast Fourier transform, numerical solution of differential equations, applications in research.

Week	Topics	Hours			Instructor
		Lecture	Lab	Self	
				study	
1-2	Error analysis, solution of nonlinear equation	8	-	16	Dr. Udom Robkob
3-4	Interpolation and polynomial approximation, curve fitting	8	-	16	Dr. Udom Robkob
5-6	Systems of linear equations	8	-	16	Dr. Udom Robkob
7	Midterm Examination	4	-	-	Dr. Udom Robkob
8-9	Fast Fourier transform, numerical solution of differential equations,	8	-	16	Dr. Udom Robkob

10. Course Outline

10-11	Applications in research.	8	-	16	Dr. Udom Robkob			
Final Examination								
	48	-	80					

11. Teaching Method (s)

- 11.1 Lecture
- 11.2 Suggested readings
- 11.3 Discussion in class

12. Teaching Media

- 12.1 Powerpoint Presentations
- 12.2 Texts and teaching materials

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

13.1 the ability to describe the key concepts on the topics of numerical analysis; Error polynomial approximation, curve fitting, systems of linear equations, fast Fourier transform, applications in research.

Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

40%
40%
20%
100%

14. Course Evaluation

14.1 Evaluate as indicated in number 13 above.

14.2 Evaluate student's satisfaction towards teaching and learning of the course using a questionnaire.

15. References:

Stephenson G, Radmore PM. Advanced mathematical methods for engineering and science students. UK: Cambridge University Press; 1990.

16. Instructors:

Dr. Udom Robkob

17. Course Coordinator:

Assistant Professor Dr. Santi Watanayon