COURSE SYLLABUS

1. Program of Study: Bachelor of Science (Physics)

Faculty/Institute/College: International College, Mahidol University

2. Course Code: ICPY 361

Course Title: Quantum Mechanics I

3. Number of Credits: 4 (4-0-8) (Lecture/lab/Self-study)

4. Prerequisites: None

5. Type of Course: Required Major Course

6. Session / Academic Year: 2nd Trimester/every academic year

7. Course Conditions: None

8. Course Description:

The uncertainty principle and Planck's constant, particle wave duality, Bohr 's theory, Schroedinger's equation, particle tunneling, the hydrogen problem.

9. Course Objectives:

After successful completion of this course, students will be able to 9.1 develop key concepts in the uncertainty principle and Planck's constant, particle wave duality, Bohr 's theory, Schroedinger's equation, particle tunneling, the hydrogen problem.

10. Course Outline

Week	Topics	Hours			Instructor		
		Lecture	Lab	Self			
				study			
1-2	The uncertainity principle and	8	-	16	Withoon		
	Planck's constant				Chunwachirasiri		
3-4	Particle wave duality	8	-	16	Withoon		
	·				Chunwachirasiri		
5-6	Bohr 's theory	8	-	16	Withoon		
	-				Chunwachirasiri		
7	Midterm Examination	4	-	_	Withoon		
					Chunwachirasiri		
8-9	Schroedinger's equation,	8	-	16	Withoon		
	particle tunneling				Chunwachirasiri		
10-11	Hydrogen problem.	8	_	16	Withoon		
	7 0 1				Chunwachirasiri		
Final Examination							
	48	-	80				

11. Teaching Method (s)

- 11.1 Lecture
- 11.2 Suggested readings
- 11.3 Discussion in class

12. Teaching Media

- 12.1 Powerpoint Presentations
- 12.2 Texts and teaching materials

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by the ability to

- 13.1 the ability to describe the uncertainty principle and Planck's constant,
- 13.2 the ability to describe the particle wave duality, Bohr 's theory,

Schroedinger's equation, particle tunneling, the hydrogen problem. Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F.

Ratio of mark

Mid-term examination 40% Final examination 40% Attendance and assignment 20% Total 100%

14. Course Evaluation

- 14.1 Evaluate as indicated in number 13 above.
- 14.2 Evaluate student's satisfaction towards teaching and learning of the course using a questionnaire.

15. References:

Griffiths DJ. Introduction to Quantum Mechanics. 2nd Ed. UK.: Benjamin Cummings; 2004.

16. Instructors:

Dr. Withoon Chunwachirasiri

17. Course Coordinator:

Assistant Professor Dr. Santi Watanayon