COURSE SYLLABUS

1.	Program of Study: Faculty/Institute/College:	Bachelor of Science (Physics) International College, Mahidol University
2.	Course Code: Course Title:	ICPY 473 Nuclear and Particle Physics
3.	Number of Credits:	4 (4-0-8) (Lecture/lab/Self-study)
4.	Prerequisites:	None
5.	Type of Course:	Required Major Course
6.	Session / Academic Year:	2 nd Trimester/every academic year
7.	Course Conditions:	None

8. Course Description :

Nuclear structure, nuclear forces, radioactive decay, nuclear reaction, fission, fusion, nuclear detection and measurement, applications of radioactivity, fundamental particles and interactions, classification by quantum numbers, isospin concept, symmetries, conservation laws, quark model.

9. Course Objectives:

After successful completion of this course, students will be able to

9.1 develop key concepts in the topics of nuclear structure, nuclear forces, radioactive decay, nuclear reaction, fission, fusion, nuclear detection and measurement, applications of radioactivity, fundamental particles and interactions, classification by quantum numbers, isospin concept, symmetries, conservation laws, quark model.

10. Course Outline

Week	Topics	Hours			Instructor
		Lecture	Lab	Self	
				study	
1-2	Nuclear structure, nuclear	8	-	16	Dr. Roppon Picha
	forces				
3-4	Radioactive decay, nuclear	8	-	16	Dr. Roppon Picha
	reaction, fission, fusion				
5-6	Nuclear detection and	8	-	16	Dr. Roppon Picha
	measurement, applications				
	of radioactivity				
7	Midterm Examination	4	-	-	Dr. Roppon Picha

8-9	Fundamental particles and	8	-	16	Dr. Roppon Picha		
	interactions						
10-11	Classification by quantum numbers, isospin concept, symmetries, conservation	8	-	16	Dr. Roppon Picha		
	laws, quark model						
Final Examination							
	Total	48	-	80			

11. Teaching Method (s)

11.1 Lecture

11.2 Suggested readings

11.3 Discussion in class

12. Teaching Media

12.1 PowerPoint Presentations

12.2 Texts and teaching materials

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

13.1 the ability to describe the key concepts on the topics of nuclear structure, nuclear forces, radioactive decay, nuclear reaction, fission, fusion, nuclear detection and measurement, applications of radioactivity, fundamental particles and interactions, classification by quantum numbers, isospin concept, symmetries, conservation laws, quark model. Student's achievement will be graded according to the college and university standard using the symbols: A, B+, B, C+, C, D+, D and F. Ratio of mark

Mid-term examination	40%
Final examination	40%
Attendance and assignment	20%
Total	100%

14. Course Evaluation

14.1 Evaluate as indicated in number 13 above.

14.2 Evaluate student's satisfaction towards teaching and learning of the course using a questionnaire.

15. References:

Krane KS. Introductory nuclear physics. U.S.A.: Wiley; 1987. Griffiths D. Introduction to elementary particles. U.S.A.: Wiley; 1987.

16. Instructors:

Dr. Roppon Picha

17. Course Coordinator:

Assistant Professor Dr. Santi Watanayon