Course Syllabus

1. Program of Study Faculty

2. Course Code

Course Title
3. Number of Credits

4. Prerequisites

5. Type of Course
6. Trimester/ Academic Year

7. Course condition

8. Course Description

Statistical ideas and concepts, probability and conditional probability, distribution functions, expected value, estimators, good estimators and hypothesis testing.

9. Course Objectives

After successful completion of this course, students should be able to

1. understand the statistical ideas and concepts.
2. differentiate the probability and conditional probability.
3. explain the distribution functions, expected value, estimators, good estimators and hypothesis testing.

10. Course Outline

Week	Title		Hours		
		Lecture	Lab	Self- study	
1	Chapter 1: Statistics Chapter 2: Probability	4	0	8	Taweeratana
2	Chapter 2: Probability	4	0	8	Taweeratana
3	Chapter 3: Discrete Random Variables	4	0	8	Taweeratana
4	Chapter 4: Continuous Random variables	4	0	8	Taweeratana
5	Chapter 6: Functions of Random Variables Chapter 7: Sampling distributions and Central Limit Theorem	4	0	8	Taweeratana
6	Midterm Examination				Taweeratana

	Chapter 7: Sampling distributions and Central Limit Theorem Chapter 8: Estimation	4	0	8	
7	Chapter 8: Estimation	4	0	8	Taweeratana
8	Chapter 9: Point Estimators and Methods of Estimation	4	0	8	Taweeratana
9	Chapter 10: Hypothesis Testing	4	0	8	Taweeratana
10	Chapter 10: Hypothesis Testing	4	0	8	Taweeratana
11	Chapter 11: Linear Model, Least Squares and Advanced Topics	4	0	8	Taweeratana
Total					

11. Teaching Method (s)

Method of teaching consists of lecturing, assignments, and presentation.

12. Teaching Media

Textbooks, Handouts and LCD projectors.

13. Measurement and evaluation of student achievement

Student achievement is measured and evaluated by
13.1 the ability to understand the statistical ideas and concepts.
13.2 the ability to differentiate the probability and conditional probability.
13.3 the ability to explain the distribution functions, expected value, estimators, good estimators and hypothesis testing.

Students will be evaluated from their total score (out of 100\%). Grading system is $\mathrm{A}, \mathrm{B}^{+}, \mathrm{B}, \mathrm{C}^{+}, \mathrm{C}, \mathrm{D}^{+}, \mathrm{D}$, and F .

Ratio of mark

1. Mid-term examination 35\%
2. Final examination 35\%
3. Quizzes 20\%
4. Assignment 10\%

Total 100\%

14. Course Evaluation

14.1 Students' achievement as indicated in number 13 above.
14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.
15. Reference (s)

Wackerly, D.D., Mendenhall III, W., Scheaffer, R.L. Mathematical statistics with applications. $6^{\text {th }}$ Edition. USA. Duxbury, 2002.

16. Instructor (s)

Associate Professor Taweeratana Sivadol
17. Course Coordinator

Associate Professor Dr. Prayad Pokethitiyook

