Course Syllabus

1. Program of Study Faculty	Bachelor of Science Program Mahidol University International College
2. Course Code Course Title	ICSC 303 Statistics
3. Number of Credits	4 (4-0-8) (Lecture/Lab/Self-study)
4. Prerequisites	ICNS 102 or equivalent
5. Type of Course	Core science course
6. Trimester/ Academic Yes	ar 1^{st} and 3^{rd} trimester/ 2004

-

7. Course condition

8. Course Description

Statistical ideas and concepts, probability and conditional probability, distribution functions, expected value, estimators, good estimators and hypothesis testing.

9. Course Objectives

After successful completion of this course, students should be able to

- 1. understand the statistical ideas and concepts.
- 2. differentiate the probability and conditional probability.
- 3. explain the distribution functions, expected value, estimators, good estimators and hypothesis testing.

10.	Course	Outline
-----	--------	---------

					Instructor
Week	Title	Hours			
		Lecture	Lab	Self-	
				study	
1	Chapter 1: Statistics				Taweeratana
	Chapter 2: Probability	4	0	8	
2	Chapter 2: Probability				Taweeratana
		4	0	8	
3	Chapter 3: Discrete Random				Taweeratana
	Variables	4	0	8	
4	Chapter 4: Continuous Random				Taweeratana
	variables	4	0	8	
5	Chapter 6: Functions of				Taweeratana
	Random Variables	4	0	8	
	Chapter 7: Sampling				
	distributions and Central Limit				
	Theorem				
6	Midterm Examination				Taweeratana

	Chapter 7: Sampling	4	0	8	
	distributions and Central Limit				
	Theorem				
	Chapter 8: Estimation				
7	Chapter 8: Estimation	4	0	8	Taweeratana
8	Chapter 9: Point Estimators and				Taweeratana
	Methods of Estimation	4	0	8	
9	Chapter 10: Hypothesis Testing				Taweeratana
		4	0	8	
10	Chapter 10: Hypothesis Testing				Taweeratana
		4	0	8	
11	Chapter 11: Linear Model,				Taweeratana
	Least Squares and Advanced	4	0	8	
	Topics				
	Total	44	0	88	
Final examination					

11. Teaching Method (*s*)

Method of teaching consists of lecturing, assignments, and presentation.

12. Teaching Media

Textbooks, Handouts and LCD projectors.

13. Measurement and evaluation of student achievement

Student achievement is measured and evaluated by

13.1 the ability to understand the statistical ideas and concepts.

13.2 the ability to differentiate the probability and conditional probability.

13.3 the ability to explain the distribution functions, expected value, estimators, good estimators and hypothesis testing.

Students will be evaluated from their total score (out of 100%). Grading system is A, B⁺, B, C⁺, C, D⁺, D, and F. Ratio of mark

Rutio of mark	
1. Mid-term examination	35%
2. Final examination	35%
3. Quizzes	20%
4. Assignment	10%
Total	100%

14. Course Evaluation

14.1 Students' achievement as indicated in number 13 above.

14.2 Students' satisfaction towards teaching and learning of the course using questionnaires.

15. Reference (s)

Wackerly, D.D., Mendenhall III, W., Scheaffer, R.L. Mathematical statistics with applications. 6th Edition. USA. Duxbury, 2002.

16. Instructor (*s*)

Associate Professor Taweeratana Sivadol

17. Course Coordinator

Associate Professor Dr. Prayad Pokethitiyook